LUV in charged-current b decays at LHCb

Manuel Franco Sevilla

University of Maryland

29th September 2020

Snowmass 2021

RF1: Weak decays of b and c quarks

RF5: Charged Lepton Flavor Violation

(electrons, muons and taus)

Outline

LHCb has access to several interesting decays with a tree-level $b \rightarrow c \tau \nu$ transition

~ Brief introduction

- Current charged LUV measurements
- → LHCb detector
- → Vertex isolation

~ Features of LHCb measurements

- → Muonic τ decay analyses
- → Hadronic τ decay analyses

~ Prospects for charged LUV at LHCb

- ightharpoonup Possible precision on $\mathcal{R}(X_c)$
- → Measuring kinematic distributions

Charge-current LUV status

Experiment τ decay Tag		$\mathcal{R}(D)$	$\sigma_{ m stat}$ [%] $\sigma_{ m s}$	syst [%]	$\mathcal{R}(D^*)$	$\sigma_{ m stat}$ [%] $\sigma_{ m stat}$	$\sigma_{ m syst}$ [%]	$ ho_{ m stat}/ ho_{ m syst}/ ho_{ m tot}$	
$BABAR^{\mathrm{a}}$	$\mu u u$	Had.	$0.440 \pm 0.058 \pm 0.042$	13.1	9.6	$0.332 \pm 0.024 \pm 0.018$	7.1 5		-0.45/-0.07/-0.31
Belle ^b	$\mu u u$	Semil.	$0.307 \pm 0.037 \pm 0.016$	12.1	5.2	$0.283 \pm 0.018 \pm 0.014$	6.4	4.9	-0.53/-0.51/-0.51
$\mathrm{Belle^c}$	$\mu u u$	Had.	$0.375 \pm 0.064 \pm 0.026$	17.1	7.1	$0.293 \pm 0.038 \pm 0.015$	13.0	5.2	-0.56/-0.11/-0.50
Belle ^d	πu	Had.			_	$0.270 \pm 0.035^{+0.028}_{-0.025}$	13.0	$+10.3 \\ -9.3$	
LHCb ^e	$\pi\pi\pi u$	_	_	<u> </u>	_	$0.280 \pm 0.018 \pm 0.029$	6.4	10.4	_
$\mathrm{LHCb^f}$	$\mu u u$	_		<u>—</u>		$0.336 \pm 0.027 \pm 0.030$	8.0	8.9	_
$f Average^{ m g}$	<u>—</u>	<u> </u>	$0.340 \pm 0.027 \pm 0.013$	7.9	3.8	$0.295 \pm 0.011 \pm 0.008$	3.7	2.7	$\overline{-0.39/-0.34/-0.38}$

\sim Significant deviation in $\mathscr{R}(D^{(*)})$ from SM

- → Measurements from BaBar, Belle, and LHCb
- Additionally, LHCb measures $\mathcal{R}(J/\Psi) = 0.71 \pm 0.17 \pm 0.18$
- Any anomaly will need to be characterized with independent rate and distribution measurements
- → Is LHCb systematics limited already?
 - → No! Let's see how

The LHCb experiment

- ~ GPD with focus on flavor physics
 - ⇒ 25% of $b\bar{b}$ production with 4% of solid angle (2 ≤ η ≤ 5)
 - → 100k b-hadrons produced every second

Excellent secondary vertex reconstruction

~ PID: π , K, p, μ

Upgrades

Upgrade II (proposed)

Even better granularity, improved calorimeter, and fast timing

Busy environment

$$pp \to X_b B_s^0 X$$

$$B_s^0 \to \mu^+ \mu^-$$

B-factory advantages

Lower backgrounds Collision momentum known Neutrals and electron reco

LHCb advantages

Higher statistics All b-hadron species Larger boost

Vertexing and isolation

$$pp \to X_b B_s^0 X$$
$$B_s^0 \to \mu^+ \mu^-$$

- Superb vertexing by VELO (in vacuum)
 - → Only 8.2 mm from IP, 300 µm of material
 - → Reduced to 5.1 mm from IP, 150 μm of material in upgrade
- ~ B mesons fly several cm thanks to large boost
- hicksim Developed isolation BDT for $\mathcal{R}(D^*)$ measurement
 - → Assign probability of track coming from B vertex
 - → IPX²_{PV}, IPX²_B, p_T, track angle, refitted B vertex with track

Features of LHCb measurements

Rest Frame Approximation (RFA) for muonic τ

~ Same visible final state for signal/normalization

when
$$au^- o \mu^-
u_ au ar{
u}_\mu$$
 used

- ightharpoonup But $B o D^{(*)} au
 u$ has 3 neutrinos, while $B o D^{(*)}\ell
 u$ only 1
- \sim B-factories effectively reconstruct $p_{B_{sio}}$ with B-tagging
 - $\Rightarrow p_{B_{sig}} = p_{e^+e^-} p_{B_{tag}} \text{ allows you calculate } \quad p_{miss} = p_{B_{sig}} p_{D^{(*)}} p_{\ell}$
- \sim LHCb estimates p_{X_h} with RFA
 - \rightarrow Good approximation thanks to large X_b boost

$$|p_{B_{sig}}| = \frac{m_B}{m_{\mu X_c}} \left(p_{\mu X_c}\right)_z \sqrt{1 + \tan^2 \alpha}$$

$$\downarrow^{v_{\tau}}$$

Manuel Franco Sevilla

Muonic $\Re(D^{*+})$

- ~ Proof of concept measurement in 2015
 - → Not clear if possible beforehand!
- \sim 3D simultaneous fit to q^2 , m_{miss}^2 , and E_μ^*

$$\mathcal{R}(D^*) = \frac{\mathcal{B}(\bar{B} \to D^* \tau \nu_{\tau})}{\mathcal{B}(\bar{B} \to D^* \mu \nu_{\mu})}$$

				_
Decay mod	de use	ed in <i>BABAR</i>	$\mathcal{B}(\%)$	-
$\overline{D^{*+}}$	\rightarrow	$D^0\pi^+$	67.7	LHCb
	\rightarrow	$D^+\pi^0$	30.7	
Total			98.4	
				_

Could more than double stats adding other fully charged final states

Muonic $\mathcal{R}(D^{*+})$ control samples

~ Control samples instrumental to determine bkgs.

- \rightarrow Additional K: $B \rightarrow D^*H_cX$
- → Additional $\pi: B \to D^{**}(\to D^*\pi) \operatorname{\ell} \nu$
- → Additional $\pi\pi$: $B \to D^{**} (\to D^*\pi\pi) \ell\nu$

Muonic $\mathcal{R}(D^{*+})$ systematics

Contribution	Uncert. [%]
Simulated sample size	6.2
Misidentified μ bkg.	4.8
$\overline{B} \to D^{**}(\ell^-/\tau^-)\overline{\nu}$ bkg.	2.1
Signal/norm. FFs	1.9
Hardware trigger	1.8
DD bkg.	1.5
MC/data correction	1.2
Combinatorial bkg.	0.9
PID	0.9
Total systematic	8.9
Total statistical	8.0
Total	12.0

FastSim gives a factor of 10×, which only covers Run 2

Hopefully will scale with data, but it will require faster FastSim, faster hardware progress, or more restrictive generator cuts

Data driven procedure developed for $\mathcal{R}(J/\Psi)$ will reduce it to less than 2% in updated measurement

Primarily data driven

Disappears in Run 3

Primarily data driven

Note that only 30% of the systematic uncertainty is multiplicative, so the majority does not scale with central value

Primarily data driven

Generally, systematic uncertainties will come down with data, but there will probably be a 0.5-3% systematics floor from the extrapolations to signal region and certain assumptions

Muonic $\mathcal{R}(J/\Psi)$

$$\mathcal{R}(J/\Psi) = \frac{\mathcal{B}(B_c \to J/\Psi \tau \nu_{\tau})}{\mathcal{B}(\bar{B}_c \to J/\Psi \mu \nu_{\mu})}$$

- \sim Very similar strategy to muonic $\mathcal{R}(D^{*+})$
 - → Add decay time to separate B_c from B_{u,d}
 - → Main background is muon misID

LQCD calculation already helps

Hopefully will scale with data

Will come down with more robust fit

Contribution	Uncert. [%]
Signal/norm. FFs	17.0
Simulated sample size	11.3
Fit model	11.2
Misidentified μ bkg.	7.9
Partial B_c bkg.	6.9
Combinatorial bkg.	6.5
$\epsilon_{ m sig}/\epsilon_{ m norm}$	0.9
Total systematic	25.4

Total statistical

Total

Primarily data driven

1-5% floor from difficulty of measuring FFs

Events/ $(0.6 \mathrm{GeV}^2)$	800 F 700 F 600 F 500 F 400 F 100 F 10	$0.68 < E_{\ell}^* < 1.15 \text{ GeV}$ $q^2 > 7.15 \text{ GeV}^2$ $0 = \frac{1}{2}$ $0 = \frac{1}{2}$ $0 = \frac{1}{2}$ m_{miss}^2 [GeV ²]	Events/(0.376 ps)
		miss [Gev-]	

		_		$0.68 < E_{\ell}^* < 1.$	15 GeV ∃
\mathbf{S}	1600			$q^2 > 7.15$	
Д	1400			q > 7.13	, Ge v ²] =
Events/(0.376 ps)	1200	<u>-</u>			릨
	1000	.1.			
)/s	800	<u> </u>			킄
11.	600	_			=
Vel	400	<u>=</u> =	=		
H	200	_			
		F			=
	Pulls				
	Pu - 5				
	<i>J</i> .	0.5	1	1.5	2
			decay	time [ps]	

23.9

34.9

Hadronic* $\Re(D^{*+})$

Phys. Rev. D **97**,

- hicksim Leverages additional vertex when $au^- o \pi^- \pi^+ \pi^- (\pi^0)
 u_ au$ is used
 - ightharpoonup Main background prompt $B o D^*\pi\pi\pi X$ reduced by 104 with au flight distance
 - ightharpoonup Better q^2 and m_{miss}^2 resolution thanks to more precise determination of B momentum

*Actually, the $\tau^- \to \pi^+ \pi^- \pi^- \nu_\tau$ decay is semileptonic

Measure this ratio

external branching fractions

Hadronic* $\mathcal{R}(D^{*+})$ systematics

0.1

BDT

- Similarly to previous measurements, many systematic uncertainties are expected to scale down with data
- ~ However, a floor of
 ~3-4% is more likely
 due to dependence from
 external branching
 fraction measurements

Phys. Rev. D **97**, 072013 (2018)

Contribution	Uncert. [%]
DD bkg.	5.4
Simulated sample size	4.9
MC/data correction	3.7
$\overline{B} \to D^{**}(\ell^-/\tau^-)\overline{\nu}$ bkg.	2.7
Trigger	1.6
PID	1.3
Signal/norm. FFs	1.2
Combinatorial bkg.	0.7
au decay	0.4
Total systematic	9.0
$\mathcal{B}(B \to D^* \pi \pi \pi)$	3.9
$\mathcal{B}(B \to D^* \mu \nu)$	2.0
$\mathcal{B}(\tau^+ \to 3\pi\nu)/\mathcal{B}(\tau^+ \to 3\pi\pi^0\nu)$	0.7
Total external	4.4
Total statistical	6.5
Total	12.0

^{*}Actually, the $\tau^- \to \pi^+ \pi^- \pi^- \nu_\tau$ decay is semileptonic

Muonic vs Hadronic τ decay

- ~ Run 1 measurements show key features of future LHCb LUV possibilities
 - → Dominated by systematics, but will scale with data for the most part

Note that the majority of the uncertainty does not scale with central value

Prospects for charged LUV at LHCb

Upcoming measurements

- ~ Analyses at an advanced stage
 - → Run 1 muonic $\mathcal{R}(D^0) \mathcal{R}(D^*)$
 - → Hadronic $\mathcal{R}(D^{**})$

 $B_{\rm s}^0$

$$\sim$$
 Analyses in early to very early stages primarily using Run 2

- ightharpoonup Run 2 muonic $\mathcal{R}(D^0) \mathcal{R}(D^*)$, muonic $\mathcal{R}(D^+) \mathcal{R}(D^{*+})$
- → Run 2 hadronic $\mathcal{R}(D^{*+})$, hadronic $\mathcal{R}(D^0) \mathcal{R}(D^*)$, hadronic $\mathcal{R}(D^+) \mathcal{R}(D^{*+})$
- → Muonic $\mathcal{R}(p\bar{p})$
- ightharpoonup Hadronic $B o D^{*+} au
 u$ polarization of D* and au
- ightharpoonup Muonic $B o D^{*+} au
 u$ angular distributions
- $\rightarrow \mathcal{R}(D^{*+})_{light}$
- ightharpoonup Muonic $\mathcal{R}(D_s) \mathcal{R}(D_s^*)$, hadronic $\mathcal{R}(D_s) \mathcal{R}(D_s^*)$
- → Run 2 muonic $\mathcal{R}(J/\Psi)$, hadronic $\mathcal{R}(J/\Psi)$
- → Muonic $\mathcal{R}(\Lambda_c)$, hadronic $\mathcal{R}(\Lambda_c)$

Some of these may take several years, but aim to cover as many observables as possible

Assumptions on evolution of $\mathcal{R}(X_c)$

Rı	ın 1	LS1		Run 2		n 2			LS2			Run 3	3		LS3]	Run 4	ļ	LS4]	Run 5	5	LS5	Ru	n 6	
2011	2012	2013 2)14	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	
1.1	2.0	-	_	0.3	1.7	1.7	2.2	-	-	-	8.3	8.3	8.3	-	-	-	8.3	8.3	8.3	-	50	50	50	-	50	50	fl

fh-1

- ~ Extrapolate $\mathcal{R}(D^*)$ based on Run 1 muonic $\mathcal{R}(D^{*+})$ assuming
 - → 2× more stats starting in Run 1 from adding $\mathcal{R}(D^{*0})$
 - → $3\times$ more stats starting in Run 2 from better HLT (1.5×) and cross section (2×)
 - → 2× more stats starting in Run 3 from no hardware trigger
 - → Systematics scale with data but floor of 0.5% (optimistic) and 3% (pessimistic)
- \sim Extrapolate $\mathcal{R}(J/\Psi)$ based on Run 1 muonic $\mathcal{R}(J/\Psi)$
 - → Systematics scale with data but floor of 1% (optimistic) and 5% (pessimistic)
- hicksim Estimate the other species based on $\mathcal{R}(D^*)$ extrapolation and
 - → $1/4 \times$ stats for $\Re(D)$ from smaller BF and no feed-down
 - → 1/16× stats for $\mathcal{R}(D_s^{(*)})$ from $f_s/(f_u+f_d)$ and extra track (1/2×)
 - → 1/6× stats for $\Re(\Lambda_c)$ from $f_{\Lambda_b}/(f_u+f_d)\sim 1/4$, extra track (1/2×), and larger Λ_c BF
 - → 1/20× stats for $\Re(\Lambda_c^*)$ from $f_{\Lambda_b}/(f_u+f_d)\sim 1/4$, two slow pions and lower BF
 - → Systematics scale with data but floor of 1% (optimistic) and 5% (pessimistic) but for $\Re(D)$ same as $\Re(D^*)$

Rough assumptions

based on BFs and fragmentation fractions and building on work from Patrick Owen

Prospects for $\mathcal{R}(X_c)$

- ~ Enormous improvement from Upgrade I (Runs 3+4)
 - → 50 fb⁻¹ plus factor of two from no hardware trigger
- ~ After Upgrade II (Runs 5+6) it depends on systematics scenario
 - **Significant gains** for $\mathcal{R}(J/\Psi)$, $\mathcal{R}(D_s^{(*)})$, and $\mathcal{R}(\Lambda_c^*)$ if we can control FF systematics

Measuring distributions

- ~ Upgrades give access kinematic distributions sensitive to NP
 - → Instrumental in characterizing any anomaly
 - → Unique sensitivity to $B_s \to D_s^{(*)} \tau \nu$, $B_c \to J/\Psi \tau \nu$, and $\Lambda_b \to \Lambda_c \tau \nu$ (see following talk by A. Datta)

 θ_1 resolution (rad)

Challenges of measuring distributions at LHCb

- Larger backgrounds and lack of full event reconstruction make distributions challenging
 - → Upgrade 2 samples may allow for techniques such as $B_{\mathfrak{Q}}^* \to B^+ K^-$ tagging

~ Run 1 hadronic measurement already shows some sensitivity to q² distribution

Possible sensitivity to angular distributions

- ~ Hadronic analyses expected to have good angular sensitivity
 - → Hill, John, Ke, Poluektov, JHEP **2019**, 133 (2019) 1908.04643

$$\frac{d^4\Gamma}{dq^2 d(\cos\theta_D) d(\cos\theta_L) d\chi} \propto I_{1c} \cos^2\theta_D + I_{1s} \sin^2\theta_D$$

- $+\left[I_{2c}\cos^2\theta_D+I_{2s}\sin^2\theta_D\right]\cos 2\theta_L$
- $+\left[I_{6c}\cos^2\theta_D+I_{6s}\sin^2\theta_D\right]\cos\theta_L$
- $+ [I_3 \cos 2\chi + I_9 \sin 2\chi] \sin^2 \theta_L \sin^2 \theta_D$
- $+ [I_4 \cos \chi + I_8 \sin \chi] \sin 2\theta_L \sin 2\theta_D$
- + $[I_5 \cos \chi + I_7 \sin \chi] \sin \theta_L \sin 2\theta_D$,

Summary

- \sim LHCb has a unique ability to study b
 ightharpoonup c au
 u transitions
 - $\rightarrow \mathcal{R}(D^{(*)}), \mathcal{R}(D^{(*)}), \mathcal{R}(D^{(*)}), \mathcal{R}(D^{(*)}), \mathcal{R}(J/\Psi), \mathcal{R}(\Lambda_c^{(*)})$ with muonic analyses
 - → Kinematic distributions with hadronic analyses
- ∼ Upgrade I will allow us to reach 1-6% uncertainties
- ~ Upgrade II would reduce some uncertainties 2× further
 - → Access to important kinematic distributions, key to characterize NP
- ~ Challenges ahead
 - → Will need an order of magnitude more MC than what FastSim can do today
 - → Important to calculate and measure all FF and control other systematics

